Qubitro Device Data - loT Platform Series

Qubitro Device Data - loT Platform Series

@ Difficulté Facile ® Durée 1heure(s) @ Catégories Electronique {8] Coat OUSD($)

Sommaire

Introduction

Etape 1 - Getting Started

Etape 2 - Get PCBs for Your Projects Manufactured
Etape 3 - Create a New Project

Etape 4 - Add Devices

Etape 5 - Hardware - From Device to Cloud

Etape 6 - Create Dashboard

Etape 7 - Rules to Trigger and Integration Services
Etape 8 - Code (ESP32_MQTT_Qubitro)

Commentaires

Introduction

Qubitrois an loT (Internet of Things) platform that provides tools and services for connecting, managing, and analyzing loT devices and data.
It provides a cloud-based platform where users can securely connect their loT devices and collect data from sensors and actuators.

It supports a wide range of communication protocols and provides device management capabilities, monitoring device data, linking with
third-party webhooks, and creating rules to trigger based on conditions, etc. All of it with a Great Ul

Matériaux Outils

Etape 1 - Getting Started

To get started with Qubitro, we will first need to create an account.
Go to the Qubitro website (https://www.qubitro.com/) and click on @
the "Sign Up" button. You will be prompted to enter Full Name,
Email Address,Country, and passwordto create your account.

Create your account

Your full name

Email

Qubitro Portal

Country

Once, we have created the account, we can log in from
https://portal.qubitro.com/login. However, we shall automatically

. The fabric of a journey for digital
be |ogged in to our account. transformation powered by device data.

Password

Page 1/9

https://www.qubitro.com/
https://portal.qubitro.com/login
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_1.png

Etape 2 - Get PCBs for Your
Projects Manufactured

You must check out PCBWAY for ordering PCBs online for cheap!

You get 10 good-quality PCBs manufactured and shipped to your

doorstep for cheap. You will also get a discount on shipping on your

first order. Upload your Gerber files onto PCBWAY to get them
manufactured with good quality and quick turnaround time.
PCBWay now could provide a complete product solution, from
design to enclosure production. Check out their online Gerber
viewer function. With reward points, you can get free stuff from
their gift shop.

Etape 3 - Create a New Project

Once you have logged in, you will be prompted to create a project.

Enter a name for your project and mention a description for your
project.

Page2/9

Create new project

Project name

indigo-386

Project description

description of indigo-386

Helpful for teams or differentiating between projects

with similar names.

https://www.pcbway.com/
https://www.pcbway.com/
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_image_3JJb6iqRSm.jpeg
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_2.png

Etape 4 - Add Devices

Next, you will need to add devices to your application. Go to the Project (if not already open), there we can see a button [+ New Source]. Fron
this section, we will have 3 major sections -

1. Communication Protocol

With a prompt to choose between LoRaWAN, MQTT, & Cellular. We can choose the protocol that best suits our use-case.

| choose MQTT to get started with the platform basics. And since | shall be using Arduino IDE for programming the board, | went ahead with
the MQTT Broker (Qubitro has its own broker - we shall see it in the upcoming section). In case you wish to know how the Toit platform
works, you can check my Tutorial on Toit.io

2. Device Details

| shall be using an ESP32 Dev Board, and therefore entered the details as per the image below -

3. Credentials

In the next step, we receive credentials, to connect to the MQTT Broker. We can use this detail to connect to the broker as aclient - to
Publish or Subscribe.

Now that we have the server, port, username and password we are all ready to send data to the Qubitro Cloud. Copy these details in a safe
place (We can view them later in the device settings as well though)

LoRaWAN New source LoRaWAN R MQTT Cancel
Browse MQTT documentation.
MQTT
MQTT Device name
Cellular
devicel
MQTT
N Oth
Cellular a Qubitro supports all MQTT v5.0, her Device description
v3.1.1, and v.3.1 standards.
Temp & Humid Data logger
Othe[Documentation (4
Device brand
Toit Espressif
Connect with a custom library
Documentation [specifically designed for Qubitro. Device model
ESP32 Dev Board
Device location
Asia/Calcutta
Z .
Etape 5 - Hardware - From Device

to Cloud

Once you have configured your devices, you can start collecting
data. Qubitro provides a range of tools for data collection and
analysis, including real-time data visualization, data logging, and
data filtering.

We shall upload a code on ESP32 using Arduino IDE to send data to
Qubitro -

#include <WiFiClientSecure.h>

#include <PubSubClient.h>

#include <HTTPClient.h>

#include <ArduinoJson.h>

These are the necessary libraries for establishing an MQTT
connection, handling HTTP requests, and working with JSON data.

const char* ssid = "XXXXXXXXX";

Page 3/9

https://www.hackster.io/school_of_iot/toit-io-iot-platform-series-2-a352e0
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_3.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_4.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_5.png

const char* password = "XXXXXXXXX";

String topic = "Xxxxx";

String mqtt_server = "broker.qubitro.com";

String mattuser = "XXXXXXXXXXXXXXXXXXXXXX;

String mattpass = "XXXXXXXXXXXXXXXXXXXXXX'';

String clientld = "XXXXXXXXXXXXXXXXXXXXXX";

ssig These variables store the Wi-Fi credentials (and), MQTT
broker server address (), MQTT
authentication credentials (and
), MQTT client ID (), and the
MQTT topic () to which
the data will be

password maqtt_server

maqttuser mattpass clientld
topic

published.

WiFiClientSecure espClient;

PubSubClient client(espClient);

float humidity = O;

float temp = 0;

WiFiClientSecure PubSubClient Create an instance of and
classes to establish a secure

connection with the MQTT broker. Also, initializing default value of
temperature and humidity.

#define MSG_BUFFER_SIZE (500)

char msg[MSG_BUFFER_SIZE];

char output[MSG_BUFFER_SIZE];

Define the size of the message buffer for storing MQTT messages.

void device_setup() {

Page 4/9

/I ... Wi-Fi connection setup ...

This function sets up the Wi-Fi connection by connecting to the

ssid | password specified Wi-Fi network (and).

void reconnect() {

/I... MQTT reconnection logic ...

This function handles the reconnection to the MQTT broker in case
of disconnection.

void setup() {

/I ... Initialization code ...

The function is the entry point of the code. It initializes
the serial communication, sets up the device, establishes
a connection with the MQTT broker, and prepares the secure

WiFiClientSecure PubSubClient connection using and objects.

setup()

void loop() {

/... Main code loop ...

The function is the main execution loop of the code. It
checks the MQTT connection, publishes the simulated
temperature and humidity data to the MQTT topic, and then waits
for a delay of 1 second before repeating the process.

Inside the function, you'll notice the following steps:

loop()

loop()
it (!client.connected()). checks if the MQTT client is
connected. If not, it calls the
reconnect() function to establish the connection.

)0 allows the MQTT client to
maintain the connection and
handle any incoming messages.
temp | humidity® The and variables are randomly generated
simulated values.
e A JSON document is created using the ArduinoJson library to
store the temperature and humidity data.
e The JSON document is serialized into a string format using the

client.loop(

Page5/9

fupglignag sioredpihe variable.

client.publish(). The function is used

to publish the
serialized JSON data to the specified MQTT topic.
e The serialized JSON data is printed to the serial monitor using .
e Adelay of 1 second is added before repeating
the loop.

Serial.printin()

Full version of the code available in the Code Section.

Now that we have written the code, upload it to the ESP32 board
and wait for it to send data to cloud.

To check data, go to Device Name that you created, and check for
any incoming data in the table. (refresh the table in case data not

retrieved)

Etape 6 - Create Dashboard

Now that we were able to fetch for real-time data from the ESP32 board and view it on the table of Qubitro. Let us use the visualization
feature to plot a graph of the data. Trust me, it takes seconds to setup the whole thing.

e Go to Dashboards, and create a New Dashboard. Give it a name.

e Once created, open it and go to Edit > Add Widget > Charts.

e Click on the new widget > three dots (settings) > Customization.

e Accordingly, select the data source, chart type and colour for data variables. Follow the below images for reference, and final Graph.

Data source example above
Data Point example above
Finally, | received the above graph based on a 30-minute data logging. If we head back to the main dashboard page, we can have a proper
view, and with a view configuration, receive live data in realtime on Qubitro.
e Inthe dashboard, click on the chart widget we created, click on edit and drag it to the middle.
e Stretch and play with the widget according to the need. Resizing it for proper viewing. Remember to save it.

If you are facing trouble with viewing the data with 4 points in the graph period, you can change it in the View Mode's configuration of the
graph widget.
Now, using this we can view the data of our device based on our needs!

Srojects 3 makseconnact

devicel

WIDGET
Temp & Humid
NAME

DATA SOURCE ~

makerconnect

devicel

Page 6/9

https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_5.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_6.png

Customize widget

+ Add

SELECTED POINTS

TEMPERATURE A

CHANGE COLOR .

CHART TYPE Line

LINE CURVE

REMOVE Temp&Hum viow [0 sawew M @

S

HUMIDITY v
-

« B o 24 nours 7 day: 30days 12 month
Temp & Humid
O Temperawre <O Humidity

TSI W o MU A e

VA A W A g g o

Etape 7 - Rules to Trigger and Integration Services

Finally, Qubitro allows you to integrate with other services such as Twilio, Slack, MailGun, and SendGrid. We can also use the trigger for
Webhooks (RAW HTTP request) triggering, You can do this by clicking on the "Rules" tab in the Device section and selecting the service you

want to integrate with.

Congratulations! You have now completed the Qubitro loT Platform documentation tutorial. We hope that this tutorial has provided you
with the information you need to get started with Qubitro and create your own loT application.

If you have any questions or need further assistance, please visit the Qubitro website or contact their support team.

Hurray! @
We have learned another loT Platform - Qubitro Device Data Platform

Page 7/9

https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_7.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_8.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_9.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_10.png

Etape 8 - Code (ESP32_MQTT_Qubitro)

#include <WiFiClientSecure.h>
#include <PubSubClient.h>
#include <HTTPClient.h>
#include <ArduinoJson.h>

// WiFi SSID and Password

const char* ssid = "XXXXXXXXX";

const char* password = "XXXXXXXXX";

String topic = "Xxxxx";

String mqtt_server = "broker.qubitro.com";
String mattuser = "XXXXXXXXXXXXXXXXXXXXXX";
String mgttpass = "XXXXXXXXXXXXXXXXXXXXXX'";
String clientld = "XXXXXXXXXXXXXXXXXXXXXX'";

WiFiClientSecure espClient;
PubSubClient client(espClient);

float humidity = 0;
float temp = 0;

#define MSG_BUFFER_SIZE (500)
char msg[MSG_BUFFER_SIZE];
char outputfMSG_BUFFER_SIZE];

void device_setup() {
delay(10);
// We start by connecting to a WiFi network
Serial.printIn();
Serial.print("Connecting to ");
Serial.printin(ssid);

WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);

while (WiFi.status() '= WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.printin("™);
Serial.printin("WiFi connected");
Serial.printin("IP address: ");
Serial.printin(WiFi.locallP());

void reconnect() {
// Loop until we're reconnected
while (!client.connected()) {
Serial.printin("Attempting MQTT connection...");

if (client.connect(clientld.c_str(), mgttuser.c_str(), mqttpass.c_str())) {
Serial.print("MQTT connected");

}else {
Serial.print(“failed, rc =");
Serial.print(client.state());
Serial.printin(", try again in 5 seconds");
// Wait 5 seconds before retrying
delay(5000);

}

}
}

void setup() {
delay(500);
// When opening the Serial Monitor, select 9600 Baud
Serial.begin(115200);
delay(500);
device_setup();

acnCliant catlneariiral\://elkin varifiratinn

Page 8/9

GO IT L ST DG LU Gy SN ¥ G U 1
//Serial.printin(maqtt_server);
client.setServer(mqtt_server.c_str(), 8883);

}
void loop() {

if (Iclient.connected()) {
reconnect();

}

client.loop();

temp = random(20,30);
humidity = random(60,70);

StaticJsonDocument<200> doc;
doc["Temperature"] = temp;
doc["Humidity"] = humidity;
serializeJson(doc, output);
doc.garbageCollect();

client.publish(topic.c_str(), output);
Serial.printin(output);

delay(1000);

Page 9/9

	Qubitro Device Data - IoT Platform Series
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - Getting Started
	Étape 2 - Get PCBs for Your Projects Manufactured
	Étape 3 - Create a New Project
	Étape 4 - Add Devices
	Étape 5 - Hardware - From Device to Cloud
	Étape 6 - Create Dashboard
	Étape 7 - Rules to Trigger and Integration Services
	Étape 8 - Code (ESP32_MQTT_Qubitro)

