
Qubitro Device Data - IoT Platform Series

Qubitro Device Data - IoT Platform Series

Introduction
Qubitro is an IoT (Internet of Things) platform that provides tools and services for connecting, managing, and analyzing IoT devices and data.

It provides a cloud-based platform where users can securely connect their IoT devices and collect data from sensors and actuators.

It supports a wide range of communication protocols and provides device management capabilities, monitoring device data, linking with

third-party webhooks, and creating rules to trigger based on conditions, etc. All of it with a Great UI ❤

Facile 1 heure(s) Électronique 0 USD ($) Dif-culté  Durée  Catégories  Coût

Sommaire

Introduction

Étape 1 - Getting Started

Étape 2 - Get PCBs for Your Projects Manufactured

Étape 3 - Create a New Project

Étape 4 - Add Devices

Étape 5 - Hardware - From Device to Cloud

Étape 6 - Create Dashboard

Étape 7 - Rules to Trigger and Integration Services

Étape 8 - Code (ESP32_MQTT_Qubitro)

Commentaires

Matériaux Outils

Étape 1 - Getting Started
To get started with Qubitro, we will -rst need to create an account.

Go to the Qubitro website (https://www.qubitro.com/) and click on

the "Sign Up" button. You will be prompted to enter Full Name,

Email Address,Country, and password to create your account.

Once, we have created the account, we can log in from

https://portal.qubitro.com/login. However, we shall automatically

be logged in to our account.

Page 1 / 9

https://www.qubitro.com/
https://portal.qubitro.com/login
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_1.png

Étape 2 - Get PCBs for Your
Projects Manufactured
You must check out PCBWAY for ordering PCBs online for cheap!

You get 10 good-quality PCBs manufactured and shipped to your

doorstep for cheap. You will also get a discount on shipping on your

-rst order. Upload your Gerber -les onto PCBWAY to get them

manufactured with good quality and quick turnaround time.

PCBWay now could provide a complete product solution, from

design to enclosure production. Check out their online Gerber

viewer function. With reward points, you can get free stuff from

their gift shop.

Étape 3 - Create a New Project
Once you have logged in, you will be prompted to create a project.

Enter a name for your project and mention a description for your

project.

Page 2 / 9

https://www.pcbway.com/
https://www.pcbway.com/
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_image_3JJb6iqRSm.jpeg
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_2.png

Étape 4 - Add Devices
Next, you will need to add devices to your application. Go to the Project (if not already open), there we can see a button [+ New Source]. From

this section, we will have 3 major sections -

1. Communication Protocol

With a prompt to choose between LoRaWAN, MQTT, & Cellular. We can choose the protocol that best suits our use-case.

I choose MQTT to get started with the platform basics. And since I shall be using Arduino IDE for programming the board, I went ahead with

the MQTT Broker (Qubitro has its own broker - we shall see it in the upcoming section). In case you wish to know how the Toit platform

works, you can check my Tutorial on Toit.io

2. Device Details

I shall be using an ESP32 Dev Board, and therefore entered the details as per the image below -

3. Credentials

In the next step, we receive credentials, to connect to the MQTT Broker. We can use this detail to connect to the broker as a client - to

Publish or Subscribe.

Now that we have the server, port, username and password we are all ready to send data to the Qubitro Cloud. Copy these details in a safe

place (We can view them later in the device settings as well though)

#include <WiFiClientSecure.h>

#include <PubSubClient.h>

#include <HTTPClient.h>

#include <ArduinoJson.h>

const char* ssid = "xxxxxxxxx";

Étape 5 - Hardware - From Device
to Cloud
Once you have con-gured your devices, you can start collecting

data. Qubitro provides a range of tools for data collection and

analysis, including real-time data visualization, data logging, and

data -ltering.

We shall upload a code on ESP32 using Arduino IDE to send data to

Qubitro -

These are the necessary libraries for establishing an MQTT

connection, handling HTTP requests, and working with JSON data.

Page 3 / 9

https://www.hackster.io/school_of_iot/toit-io-iot-platform-series-2-a352e0
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_3.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_4.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_5.png

const char* password = "xxxxxxxxx";

String topic = "xxxxx";

String mqtt_server = "broker.qubitro.com";

String mqttuser = "xxxxxxxxxxxxxxxxxxxxxx";

String mqttpass = "xxxxxxxxxxxxxxxxxxxxxx";

String clientId = "xxxxxxxxxxxxxxxxxxxxxx";

ssid

password mqtt_server

mqttuser mqttpass clientId

topic

WiFiClientSecure espClient;

PubSubClient client(espClient);

float humidity = 0;

float temp = 0;

WiFiClientSecure PubSubClient

#define MSG_BUFFER_SIZE (500)

char msg[MSG_BUFFER_SIZE];

char output[MSG_BUFFER_SIZE];

void device_setup() {

These variables store the Wi-Fi credentials (and), MQTT

broker server address (), MQTT

authentication credentials (and

), MQTT client ID (), and the

MQTT topic () to which

the data will be

published.

Create an instance of and

classes to establish a secure

connection with the MQTT broker. Also, initializing default value of

temperature and humidity.

De-ne the size of the message buffer for storing MQTT messages.

Page 4 / 9

// ... Wi-Fi connection setup ...

}

void reconnect() {

// ... MQTT reconnection logic ...

}

void setup() {

// ... Initialization code ...

}

setup()

void loop() {

// ... Main code loop ...

}

loop()

if (!client.connected())

client.loop()

temp humidity

reconnect()

ssid password

WiFiClientSecure PubSubClient

loop()

This function sets up the Wi-Fi connection by connecting to the

speci-ed Wi-Fi network (and).

This function handles the reconnection to the MQTT broker in case

of disconnection.

The function is the entry point of the code. It initializes

the serial communication, sets up the device, establishes

a connection with the MQTT broker, and prepares the secure

connection using and objects.

The function is the main execution loop of the code. It

checks the MQTT connection, publishes the simulated

temperature and humidity data to the MQTT topic, and then waits

for a delay of 1 second before repeating the process.

Inside the function, you'll notice the following steps:

 checks if the MQTT client is

connected. If not, it calls the

function to establish the connection.

 allows the MQTT client to

maintain the connection and

handle any incoming messages.

The and variables are randomly generated

simulated values.

A JSON document is created using the ArduinoJson library to

store the temperature and humidity data.

The JSON document is serialized into a string format using the

Page 5 / 9

client.publish()

serializeJson() output

Serial.println()

function and stored in the variable.

The function is used

to publish the

serialized JSON data to the speci-ed MQTT topic.

The serialized JSON data is printed to the serial monitor using .

A delay of 1 second is added before repeating

the loop.

Full version of the code available in the Code Section.

Now that we have written the code, upload it to the ESP32 board

and wait for it to send data to cloud.

To check data, go to Device Name that you created, and check for

any incoming data in the table. (refresh the table in case data not

retrieved)

Étape 6 - Create Dashboard
Now that we were able to fetch for real-time data from the ESP32 board and view it on the table of Qubitro. Let us use the visualization

feature to plot a graph of the data. Trust me, it takes seconds to setup the whole thing.

Go to Dashboards, and create a New Dashboard. Give it a name.

Once created, open it and go to Edit > Add Widget > Charts.

Click on the new widget > three dots (settings) > Customization.

Accordingly, select the data source, chart type and colour for data variables. Follow the below images for reference, and -nal Graph.

Data source example above

Data Point example above

Finally, I received the above graph based on a 30-minute data logging. If we head back to the main dashboard page, we can have a proper

view, and with a view con-guration, receive live data in realtime on Qubitro.

In the dashboard, click on the chart widget we created, click on edit and drag it to the middle.

Stretch and play with the widget according to the need. Resizing it for proper viewing. Remember to save it.

If you are facing trouble with viewing the data with 4 points in the graph period, you can change it in the View Mode's con-guration of the

graph widget.

Now, using this we can view the data of our device based on our needs!

Page 6 / 9

https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_5.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_6.png

Étape 7 - Rules to Trigger and Integration Services
Finally, Qubitro allows you to integrate with other services such as Twilio, Slack, MailGun, and SendGrid. We can also use the trigger for

Webhooks (RAW HTTP request) triggering, You can do this by clicking on the "Rules" tab in the Device section and selecting the service you

want to integrate with.

Congratulations! You have now completed the Qubitro IoT Platform documentation tutorial. We hope that this tutorial has provided you

with the information you need to get started with Qubitro and create your own IoT application.

If you have any questions or need further assistance, please visit the Qubitro website or contact their support team.

Hurray! �

We have learned another IoT Platform - Qubitro Device Data Platform

Page 7 / 9

https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_7.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_8.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_9.png
https://wikifab.org/wiki/Fichier:Qubitro_Device_Data_-_IoT_Platform_Series_10.png

Étape 8 - Code (ESP32_MQTT_Qubitro)

#include <WiFiClientSecure.h>
#include <PubSubClient.h>
#include <HTTPClient.h>
#include <ArduinoJson.h>

// WiFi SSID and Password
const char* ssid = "xxxxxxxxx";
const char* password = "xxxxxxxxx";
String topic = "xxxxx";
String mqtt_server = "broker.qubitro.com";
String mqttuser = "xxxxxxxxxxxxxxxxxxxxxx";
String mqttpass = "xxxxxxxxxxxxxxxxxxxxxx";
String clientId = "xxxxxxxxxxxxxxxxxxxxxx";

WiFiClientSecure espClient;
PubSubClient client(espClient);

float humidity = 0;
float temp = 0;

#define MSG_BUFFER_SIZE (500)
char msg[MSG_BUFFER_SIZE];
char output[MSG_BUFFER_SIZE];

void device_setup() {
 delay(10);
 // We start by connecting to a WiFi network
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);

 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());

}

void reconnect() {
 // Loop until we’re reconnected
 while (!client.connected()) {
 Serial.println("Attempting MQTT connection…");

 if (client.connect(clientId.c_str(), mqttuser.c_str(), mqttpass.c_str())) {
 Serial.print("MQTT connected");
 } else {
 Serial.print("failed, rc = ");
 Serial.print(client.state());
 Serial.println(", try again in 5 seconds");
 // Wait 5 seconds before retrying
 delay(5000);
 }
 }
}

void setup() {
 delay(500);
 // When opening the Serial Monitor, select 9600 Baud
 Serial.begin(115200);
 delay(500);
 device_setup();
 espClient.setInsecure();//skip verification

Page 8 / 9

 espClient.setInsecure();//skip verification
 //Serial.println(mqtt_server);
 client.setServer(mqtt_server.c_str(), 8883);
}

void loop() {

 if (!client.connected()) {
 reconnect();
 }
 client.loop();

 temp = random(20,30);
 humidity = random(60,70);

 StaticJsonDocument<200> doc;
 doc["Temperature"] = temp;
 doc["Humidity"] = humidity;
 serializeJson(doc, output);
 doc.garbageCollect();

 client.publish(topic.c_str(), output);
 Serial.println(output);

 delay(1000);
}

Page 9 / 9

	Qubitro Device Data - IoT Platform Series
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - Getting Started
	Étape 2 - Get PCBs for Your Projects Manufactured
	Étape 3 - Create a New Project
	Étape 4 - Add Devices
	Étape 5 - Hardware - From Device to Cloud
	Étape 6 - Create Dashboard
	Étape 7 - Rules to Trigger and Integration Services
	Étape 8 - Code (ESP32_MQTT_Qubitro)

