
Getting Started with TivaWare Launchpad - Basics

Program a 32-bit Tivaware Board (TM4C123x series) from Texas Instruments using Embedded C from scratch. Contains

TM4C123G ARM-cortex MCU.

Introduction
Texas Instruments, also known as TI, is an embedded design company, that designs, manufactures and sells embedded systems. These

systems include semiconductors, integrated circuits, development boards, etc, for industrial, commercial, automotive, and personal

electronics. Tivaware is an initiative by TI to manufacture a series of MCUs that support a common SDK.

Facile 1 heure(s) Électronique, Machines & Outils, Robotique

25 USD ($)

 Dif9culté  Durée  Catégories

 Coût

Sommaire

Introduction

Étape 1 - Get PCBs For Your Projects Manufactured

Étape 2 - Getting Started �

Étape 3 - Hardware Section �

Étape 4 - Software Requirements ��

Étape 5 - Running CCS forTM4C Library -

Étape 6 - PORTs - How to use them? �

Étape 7 - First Project - LED Blinking �

Commentaires

Matériaux Outils

Étape 1 - Get PCBs For Your
Projects Manufactured
You must check out PCBWAY to order PCBs online for cheap!

You get 10 good-quality PCBs manufactured and shipped to your

doorstep for cheap. You will also get a discount on shipping on your

9rst order. Upload your Gerber 9les onto PCBWAY to get them

manufactured with good quality and quick turnaround time.

PCBWay now could provide a complete product solution, from

design to enclosure production. Check out their online Gerber

viewer function. With reward points, you can get free stuff from

their gift shop.

Page 1 / 6

https://www.pcbway.com/
https://www.pcbway.com/
https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_3.PNG

Étape 2 - Getting Started �
The TivaWare for software development kit (SDK) provides all of the components necessary for engineers to evaluate and develop

applications for the Texas Instruments TM4C Arm Cortex - M4F device family. Based on Embedded C language, it allows developers to get

started quickly, uses already-tested development methods and drivers that take less time to build and create.

In our case, we'll be using a basic microcontroller board TM4C123GXL, which has the same properties as an STM Nucleo Board. TI Boards for

this series are termed as 'Launchpad' due to its ability to support other booster drivers and boards that'll give extra support to provide more

features.

Étape 3 - Hardware Section �
This Tivaware Launchpad (TM4C123GXL) has the following

features :

Tiva TM4C123GH6PMI microcontroller

Motion control PWM

USB micro-A and micro-B connectors for USB device, host, and

on-the-go (OTG) connectivity

RGB user LED

Two user switches (application/wake)

Available I/O brought out to headers on a 0.1-in (2.54-mm) grid

On-board ICDI

Switch-selectable power sources: – ICDI – USB device

Reset switch

Preloaded RGB quickstart application

Let us check more about the TM4C123GH6PMMCU :

80MHz 32-bit ARM Cortex-M4-based microcontrollers CPU

256KB Flash, 32KB SRAM, 2KB EEPROM

Two Controller Area Network (CAN) modules (requires CAN

transceivers)

USB 2.0 Host/Device/OTG + PHY

Dual 12-bit 2MSPS ADCs, motion control PWMs

8 UART, 6 I2C, 4 SPI

This board provides more features than any other Arduino Board.

What's special about it, is the 32-bit MCU taking control of the

board.

Page 2 / 6

https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_4.PNG

Étape 4 - Software Requirements ��
To be able to upload and run codes on the Tiva launchpad, we need to download the IDE and library, then make a couple of con9gurations.

Below are the software to be downloaded -

Download and Install Code Composer Studio from here. Then click on 'Download Options' > select 'Windows single 9le (ofNine)'

Now, Download the library for TM4Cxx family - SW-TM4C from here.Then click on 'Download Options' > select 'TivaWare for TM4C

Series'

Move the downloaded library 9le to a separate folder. It can also be kept inside the Code Composer Studio folder after its installation.

Note the location of this 9le.
There are other libraries for the particular board. Even though I used the EK-TM4C123GXL board in this article. You can use any other

board, and hence download the whole library, instead of a particular board series.

Installing Code Composer Studio -

Run the CCS (Code Composer Studio) setup 9le.

Choose the Location to install the CCS. Tip - All the code 9les are saved in that location.

Choose 'Custom Installation', since we will only be using the TM4C123GXL board, select ' TM4C12x ARM Cortex M4F core-based MCU '

Étape 5 - Running CCS forTM4C Library -
Open CCS and create a new project > select Device - TM4C123GH6PM, connection - Stellaris ICD > Create project with main.c 9le

Now, right-click on the project > and select properties > go to Build > go to the ARM Compiler section > click on the Include Options >

click the icon with a green plus sign to add 9le > browse to the downloaded library 9le (previously noted location)

Now, let us use the ARM Linker > go to File Search Path > add the driverlib.lib 9le here (found at CCS installed location -

..\..\TivaWare_C_Series-v.er.sion\driverlib\ccs\Debug\driverlib.lib).

Once done, click 'Apply and Close' to continue with the build.

Alright! We can now begin with Write - Build - Upload to the Launchpad !!

�� We can also follow the Documentation for guidance on the functions used for the peripherals of the board. Download the documentation

- TivaWare™ Peripheral Driver Library for C Series User's Guide(Rev. E). ��

Page 3 / 6

https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/SW-TM4C
https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_5.PNG
https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_6.PNG
https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_7.PNG
https://www.ti.com/tool/SW-TM4C

while(1)

{

GPIOPinWrite(GPIO_PORTA_BASE,0x0A, 0x02);

SysCtlDelay(1333333);

GPIOPinWrite(GPIO_PORTA_BASE,0x0A, 0x08);

SysCtlDelay(1333333);

}

Étape 6 - PORTs - How to use them? �
Ports are the peripheral pins on an embedded system, or SoC to communicate with the external environment. Whenever a port receives a

HIGH or LOW signal, it communicates throughout the system.

A PORT is usually bit-packed, i.e. each port is represented with an 8-bit binary number. The number count starts from right to left. So

when we mention a pin's address as 0x0E - it means we are pointing at the pins which are O according to the below representation -X X X

X O O O X

If we convert 0x0E to a binary number, it becomes - 00001110. Here pins 1, 2, and 3 are pointed at to be controlled. Because the pin

counting goes reverse - 7 6 5 4 3 2 1 0 (8 pins) And therefore it looks similar to the above representation.

When we mention GPIO_PIN_1, we mean 0x02, in binary - 0000 0010. This turns pin 1 on port F to emit a HIGH signal. You can access

the Github Repository of the project from here.

For example, if we have enabled port A, which has 8 pins. And we require the use of only 2 of the pins on that port. To enable those 2 pins

according to their arrangement, we can use an 8-bit number to assign them. PortA - X X X X O X O X, which means - 0x0AWe have

enabled PIN 1 and PIN 3.

Above we can see that O represents the pins we require to enable. We can use hexadecimal format to assign. Therefore we shall be using

the function asGPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, 0x0A);

Similarly, if we require to turn ON the LEDs on this port alternatively, we can use the below command -

As you can see above, when the command with value 0x02 is run, only PIN 1 will be giving a HIGH signal - 0000 0010

When the command with value 0x08 is run, only PIN 3 will be giving a HIGH signal - 0000 1000

In both commands, the other LED will turn off since it has 0 on its pin.

Congratulations! You can now understand other functions that use the ports, directly from the documentation by TI.

Page 4 / 6

https://github.com/CETECH11/Getting-Started-with-TivaWare-Launchpad-Basics
https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_8.PNG

SysCtlClockSet(SYSCTL_SYSDIV_5

Étape 7 - First Project - LED
Blinking �
We shall be using the inbuilt RGB LED present on the board itself.

The LEDs are internally connected to GPIO 1 on Port F. You can

access the Github Repository of the project from here.

We can see from the above diagram, the pin we are trying to

control has an inbuilt RED LED. If you look carefully, the pin

name is PF_1. Rest PF_2 and PF_3 are Blue and Green LED

respectively.

Also, we require to set the System Clock Frequency to 40 MHz.

Therefore, we'll use the below parameters (in sequence) --

SYSCTL_XTAL_16MHZ - Precise Internal OSC-

SYSCTL_USE_OSC - Forwarding the OSC- SYSCTL_USE_PLL -

Generates 400 MHz, then divided by 2 = 200 MHz-

SYSCTL_SYSDIV_5 - OSC divided by 5 = 40MHz

Using the SysCtlClockSet() function, we can set the clock

con9guration required - Final Clock frequency = 40 MHz

Page 5 / 6

https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_9.PNG
https://github.com/CETECH11/Getting-Started-with-TivaWare-Launchpad-Basics
https://wikifab.org/wiki/Fichier:Getting_Started_with_TivaWare_Launchpad_-_Basics_10.PNG

Page 6 / 6

	Getting Started with TivaWare Launchpad - Basics
	Sommaire
	Introduction
	Matériaux
	Outils

	Étape 1 - Get PCBs For Your Projects Manufactured
	Étape 2 - Getting Started 🗽
	Étape 3 - Hardware Section 🔧
	Étape 4 - Software Requirements 👨💻
	Étape 5 - Running CCS forTM4C Library -
	Étape 6 - PORTs - How to use them? 🔌
	Étape 7 - First Project - LED Blinking 🚀

